In der serienmäßigen Verarbeitung von hochfesten Feinkornbaustählen zeigte sich, dass verschiedene Stähle gleicher Festigkeitsklasse zu stark unterschiedlichen Schweißergebnissen beim Laserstrahltiefschweißprozess führen können. Die materialbedingten Einflüsse auf das Schmelzbadverhalten sind bisher in keiner bekannten Forschungsarbeit untersucht worden. Diese Arbeit erweitert die bisherige Forschung mit neuen Erkenntnissen aus umfangreichen Materialanalysen und Schweißversuchen. Dadurch wurde es möglich, ein ganzheitliches Erklärungsmodell der materialbedingten Einflüsse beim Laserstrahltiefschweißprozess zu beschreiben.
Diese Arbeit fokussierte sich einerseits auf die Analyse der chemischen Zusammensetzung der Grundmaterialien und die Auswirkungen der Legierungselemente auf die Schweißnahtvorbereitung in Kombination mit dem Vorprozess Laserstrahlbrennschneiden. Andererseits wurde gezielt die Auswirkung der chemischen Grundmaterialzusammensetzung auf das Schmelzbadverhalten im Laserstrahltiefschweißprozess untersucht. Dabei wurden die Blechstärken so variiert, dass durchgeschweißte und nicht durchgeschweißte I-Naht-Verbindungen, geschweißt unter konstanten Schweißbedingungen, analysiert werden konnten. Die Schweißparameter und der Hilfsstoffeinsatz wurden dabei konstant gehalten, sodass Vergleichsanalysen der Schweißergebnisse möglich waren. Bei durchgeschweißten Stößen wurde die Schmelzbadoberfläche, aber auch die Schmelzbadunterseite per Hochgeschwindigkeitskamera inkl. Laserlichtfilter analysiert. Bei nicht durchgeschweißten Stößen wurde die Wirkung der verschiedenen Schnittkantenzustände auf das Einschweißverhalten und die Einbrandgeometrie an mehr als 100 Makroschliffen untersucht.
Die Untersuchungen zeigten, dass die Art der Schnittkantenbehandlung nach dem Laserstrahlbrennschneidprozess materialbedingt zu unterschiedlichen Schnittkantenzuständen führt. Diese können in weiterer Folge die Schweißergebnisse stark beeinflussen. Auch bei mechanisch bearbeiteten Schweißnahtvorbereitungen wurden grundwerkstoffbedingte Unterschiede in der Einbrandform und im Erstarrungsgefüge nachgewiesen. Unbehandelte und somit schnittoxidbehaftete Schnittkanten bzw. auch Schweißnahtvorbereitungen mit manuell aufgetragenem SiO2 führen zu einer Stabilisierung der Dampfkapillare und erhöhen die Einschweißtiefe signifikant. Die positive Wirkung von Oxiden, welche direkt in der Schweißfuge dem Schmelzbad zugeführt werden, wurden mit den experimentellen Versuchen in dieser Arbeit erstmals nachgewiesen. Bei den gewählten Schweißparametersätzen stellen die Oxide in der Schweißfuge die dominierende Einflussmöglichkeit beim Laserstrahltiefschweißprozess dar. Vergleiche der mechanisch-technologischen Verbindungseigenschaften bei unterschiedlichen Schnittkantenzuständen und Schweißversuche mit unterschiedlichen Schutzgaszusammensetzungen zeigten die Auswirkungen der verschiedenen Fugenvorbereitungen auf die Schweißergebnisse.
Durch die Kombination der bisherigen Erkenntnisse aus der Forschung mit den neu gewonnenen Erkenntnissen aus dieser Arbeit, konnte ein ganzheitliches Erklärungsmodell aufgestellt werden, das die Einflüsse der Grundmaterialzusammensetzung entlang der Prozesskette beschreibt und die materialabhängigen Unterschiede der Schweißergebnisse aus dem Laserstrahltiefschweißprozess nachvollziehbar macht.
Die Erkenntnisse dieser Arbeit ermöglichen ein erhöhtes Prozessverständnis und zeigen neue Möglichkeiten zur Effizienzsteigerung in der Blechverarbeitungsprozesskette mit Lasertechnologien.