In diesem Buch wird die Empfindlichkeit des Automatic Speech Recognition-Werkzeugs Whisper auf Störgeräusche untersucht. Hierbei werden unterschiedliche Geräuschtypen in verschiedenen Lautstärken untersucht. Es zeigte sich, dass einige Störgeräusche wie reines Rauschen oder Hintergrundgespräche einen höheren Einfluss auf die Transkript-Fehlerrate haben. Es wurde untersucht, ob mittels Machine Learning-Algorithmen und evolutionären Algorithmen eine Audioplugin-basierte Vorverarbeitung gefunden werden kann, welche die Transkriptgenauigkeit in Gegenwart von Störgeräuschen verbessert. Die Ergebnisse zeigen, dass mit den gewählten Methoden Verbesserungen für einzelne Störgeräusche erzielt werden konnten. Eine universelle Pluginkette zur Verbesserung der Transkriptgenauigkeit auf beliebigen Daten konnte jedoch nicht identifiziert werden.